
www.manaraa.com

Local Views on Distributed Systems and theirCommunicationIngrid Fischer?1, Manuel Koch2, Gabriele Taentzer21 International Computer Science Institute, Berkeley, USA, and IMMD2, Universityof Erlangen-Nuremberg, Germany, idfische@informatik.uni-erlangen.de2 Technical University of Berlin, Germany, fmlkoch,gabig@cs.tu-Berlin.deAbstract. Distributed graph transformation has been used to specifystatic as well as dynamic aspects of distributed systems. To supportdistributed designs by di�erent developers, local views are introduced. Alocal view on a distributed system consists of one local system, its importand export interfaces, and connected remote interfaces. The behavior ofa local system is speci�ed by a set of graph rules that are applicable onlyto the local view of the local system. Local systems communicate eithersynchronously or asynchronously via their import and export interfaces.Asynchronous communication is modeled by sequential application ofgraph rules, synchronous communication by the amalgamation of graphrules. We compose a distributed system grammar from the rule sets forlocal systems. The operational semantics of the distributed system isgiven by distributed transformation sequences.1 IntroductionDistributed graph transformation has been presented as a visual means for speci-fying static as well as dynamic aspects of distributed systems [8, 3, 6]. Whereas [8]introduces the basis concepts of distributed graph transformation based on thedouble-pushout approach to graph transformation, several extensions towards aspeci�cation technique customized for distributed systems have been proposed.In [3], distributed graph rules were equipped with application conditions for ad-ditional control of the rule application. Furthermore, attribution concepts havebeen integrated [4] to specify occurring data. In [6], both extensions have beencombined to yield a speci�cation technique suitable for describing the main as-pects of distributed systems.However, distributed graph transformation as introduced up to now assumesa global view on the whole distributed system, which is desirable in the earlystage of system development to get an overview. In this �rst phase, network andinterface structure graphs are developed and the principle network activities andinterface services are described by distributed graph rules. After the networkstructure and its recon�guration possibilities as well as the interfaces are �xed,? I. Fischer was partly supported by a postdoc stipend of \Gemeinsamen Hochschul-sonderprograms III von Bund und L�andern" from the DAAD.



www.manaraa.com

the system developers are supposed to take a local view on network nodes andlocal system parts running on them.To support this second phase of the development process as well, local viewson distributed graphs are introduced in this paper. A local view contains a localsystem itself, its import and export interfaces and remote import and export in-terfaces to which the local system has connections. The behavior of a local systemis speci�ed by a set of local view rules, i.e. graph rules applicable only to the lo-cal view of the local system. Two local systems can communicate synchronouslyor asynchronously via their import and export interfaces. Asynchronous com-munication is modeled by sequential application of local view rules, whereassynchronous communication is formalized by rule amalgamation as presented in[5] for arbitrary cocomplete categories.The synchronization of local view rules describes a kind of service requestwhich is not already available, but can be computed. The result is put into anexport interface.A distributed system grammar contains the set of local view rules for eachlocal system participating in the distributed system. The operational semanticsof the distributed system is given by the set of all distributed transformationsequences starting at the start graph, which represents the initial state of thedistributed system.To simplify the presentation in this paper, we present concepts for labeledgraphs instead of attributed graphs. All main concepts of distributed graphtransformation and their local views are illustrated in a case study concerningdistributed con�guration management [9].2 Distributed Con�guration ManagementFirst, we introduce a case study dealing with Distributed Con�guration Manage-ment, as described in [9], for verifying the usability of the ideas developed lateron.1The size of software projects and requirements for high quality make it dif-�cult to plan and coordinate projects. Two third of time and money spent onthem go into maintenance and development after the project was �nished. Fur-thermore, the knowledge needed to complete a greater larger project is hardlyavailable in a single company. External project partners must contribute. Oftenit is also cheaper to allocate tasks to external experts. One possible scenario isto have just the core developers located in the original company. Additional per-sonnel is situated around the world wherever the knowledge needed is availablefor a low price. With an ever growing demand on distributed software develop-ment, communication, coordination and quality management are needed, as allproject sites must have access to a consistent actual set of project documents.When a project site changes a document leading to a new revision, it must be-come known in all other project sites, too. This is especially a problem when no1 The authors would like to thank V. Volle for numerous discussions.



www.manaraa.com

ImpLoSy ExpFig. 1. The type graph DiSy.central online archive can be used by all project partners. In this situation eachproject site has its own revision archive, a local repository where all documentsand their di�erent revisions are stored. Documents are replicated among revisionarchives to ensure that each project site has an up-to-date document set. Thiscan be done by di�erent means via the Internet daily, hourly, weekly or even bysending a oppy via postal mail. Workspaces are used when a revision archivedocument is to be changed or a new document has to be inserted. A workspaceis connected to one archive and each archive may have an arbitrary number ofworkspaces. When the owner of a workspace wants to change a document he/shechecks it out from the archive into the workspace. Then the actual change cantake place or something new can be created. When this work is �nished, thedocuments are checked back into the revision archive. In the following sectionsparts such a system will be described with distributed graph transformations.3 Distributed Typed GraphsWe consider a distributed system consisting of local systems communicating viaexport and import interfaces. In export interfaces, local systems present objectsaccessible for remote systems whereas import interfaces contain local copies ofobjects from remote export interfaces. This idea of a distributed system's topol-ogy is modeled in the graph DiSy shown in Figure 1. We provide a node LoSyfor local systems, a node Exp for export interfaces and a node Imp for im-port interfaces. Connections are possible between local systems and any type ofinterface and between import and export interfaces.The nodes of the graph DiSy are abstract in the sense that they show onlythe main components of a distributed system. In order to instantiate the abstracttypes for a concrete application, an application speci�c graph NTG is chosen.This graph has to possess the structure of our distributed system, which isensured by the existence of a graph morphism tNTG : NTG ! DiSy, called anetwork type graph in the following.De�nition 1 (network graph). A network type graph is a graph morphismtNTG : NTG ! DiSy. Each graph morphism tG : G ! NTG in NTG is anetwork graph w.r.t. NTG. We often write simply NTG for the network typegraph tNTG and G for a network graph w.r.t. NTG if no confusion is possible.Example 1. The network type graph for the distributed system of the case studyas introduced in Section 2 is shown in Figure 2 on the right-hand side. It con-tains two kinds of local systems, namely Workspace and Revisionarchive, two



www.manaraa.com

ImWS

ImpExpLoSy

ExWS ImRA

ExRA

Workspace WS

W
or

ks
pa

ce

ExWS

ImWSExRA

Revisionarchive

ImRAImRA ExRA

ImRA

Revisionarchive RA

ExRA

R
ev

is
io

na
rc

hi
veFig. 2. A network graph modeling two revision archives with a workspace connectedto one of the revision archives (left) and its network type graph (right).di�erent kinds of export interfaces, namely ExWS for workspaces and ExRA forrevision archives, and two di�erent types of import interfaces ImWS and ImRAfor workspaces and revision archives, respectively.2 Via the interfaces the repli-cation between di�erent archives and the checking in and out between archiveand workspace can be realized. In Figure 2 on the left-hand side a network graphw.r.t. the network type graph on the right is shown. It represents a snapshot of asmall project with two revision archives and one workspace, together with theirinterfaces.The internal state of local systems and interfaces is described by a labeledgraph. To simplify the presentation of the paper, we assume a common label setL for all local systems and interfaces.Example 2. The internal states of workspaces and revision archives contain therevisions of documents (text �les, code �les, etc.) the project partners work on.Documents belonging together are packed into con�gurations that can containother con�gurations. Each time a document or a whole con�guration is changedthe old version is kept and the new one is stored as a new revision of the oldone. Documents or con�gurations cannot be changed in the revision archive. Tochange a document, it has to be checked out into a workspace. However, onlyone document can be checked out into the workspace and con�gurations haveto be checked out completely. An example of a revision archive's local graphand its label alphabet is given in Figure 3. It consists of two con�gurations,where one con�guration is a revision of the other. Each con�guration containstwo documents with one existing in both con�gurations.Given a network graph G, each node in GV is re�ned to an L-labeled graph.If the node is a local system, this labeled graph represents the local state of thelocal system. If the node is an interface, it is the local state of the interface. Anedge in GE indicates a connection between local systems and their interfacesor between interfaces. This connection is re�ned to a label-preserving graphmorphism that shows the relation between the local state of the source node ofthe network edge and its target node.2 It may be also possible to use just one export interface of a revision archive forworkspaces and other revision archives.



www.manaraa.com

ConfConf

Doc

Doc

Doc1Fig. 3. A local graph consisting of one con�guration with two documents and its revi-sions.The re�nement of a network graph tG : G ! NTG w.r.t. a network typegraph NTG is formally de�ned by a functor from the small category G inducedby the graph G into the category Graph(L) of L-labeled graphs and label pre-serving graph morphisms. A distributed graph integrates topological and localstate aspects.De�nition 2 (distributedgraph). Given a network type graph tNTG : NTG!DiSy and a set L of labels. A distributed graph over G is a pair Ĝ = htG;Giwhere tG : G! NTG is a network graph w.r.t.NTG and G : G! G(Graph(L))is a graph morphism from G to the underlying graph G(Graph(L)) of the cate-gory Graph(L).For a distributed graph Ĝ, the L-graph G(v) for each v in GV is called thelocal state of v. For each edge e in GE , the graph morphism G(e) is called the localgraph morphism for e. A morphism between distributed graphs Ĝ and Ĥ overG resp. H relates the network graphs by means of a graph morphism betweenG and H, and relates the local state of each node in G to a local state in Hby means of a label-preserving graph morphism. It can be seen as a naturaltransformation from G to H � f .De�nition 3 (distributedmorphism). A distributed morphism between dis-tributed graphs Ĝ over G and Ĥ over H is a pair f̂ = hf; � i where f : G ! His a graph morphism and � : G ! H is a family of arrows f� (a)ja 2 GV g suchthat{ for each node a in G, � (a) : G(a) ! H(f(a)) is a label preserving graphmorphism and{ for each edge e : i! j in G, � (j) � G(e) = H(f(e)) � � (i).Example 3. An example of a distributed graph is shown in Figure 4. The levelre�nement is given in the left-hand side of the �gure. Additionally, the notationused in the following is shown. It shows the local states of network nodes and thelocal graph morphisms for network edges, but omits the explicit representation



www.manaraa.com

RA

RA

notation:

ExRA

ExRAnetwork graph

local states Fig. 4. A distributed graph and its notation.
a bba

RA ExRA

2
12 31

ExRA

3

ImRA
f

RA� (a) � (b)Fig. 5. A distributed morphism.of the network graph itself and its re�nement. However, a name at the localstate indicates the network node is also found in a local state. The local systemof type RA and the interface of type ExRA are re�ned to labeled graphs thatrepresent their local state (for the sake of readability we omit labels in the�gures). The network edge is re�ned to a graph morphism. In the example of adistributed morphism f̂ : Ĝ ! Ĥ in Figure 5, the graph morphism f and thelocal morphisms � (a) and � (b) map elements to elements with the same name.For a given network type graph NTG and a label set L, distributed graphsand distributed morphisms form a category Distr(NTG;L). Composition ofdistributed morphisms is de�ned componentwise for graph morphisms betweennetwork graphs and local graph morphisms. The identity for each distributedgraph Ĝ is given by îdĜ = hidG; � i where � (a) = idG(a) for each a in GV .The pushout of two distributed morphisms f̂ = hf; � f i : Â ! B̂ and ĝ =hg; � gi : Â ! Ĉ is constructed by constructing �rst the pushout of f and g inGraph. Then the pushout of � f (a) and � g(a) for each node a in AV in categoryGraph(L) is constructed. The pushout object and the pushout morphisms for f̂and ĝ inDistr(NTG;L) are then made up of these pushout components and theresulting unique pushout morphisms. However, this construction does not yielda pushout for all distributed morphisms as the counter examples in Figure 6show.In the example on the left, a node is added to a local source graph. In orderto make the local graph morphism total, a node is inserted in the target graph



www.manaraa.com

j

g

f
k

i

PO2

i

f

g

k
jA1

PO1

C1

B1

D1

C2

B2

D2

A2Fig. 6. Examples of a non componentwise pushout construction.as well. The second example shows that the gluing of two nodes in a local sourcegraph is propagated to the target graph in order to maintain the well-de�nednessof the local graph morphism.We provide locality conditions ensuring that the pushout over two distributedmorphisms can be constructed componentwise for the network and all pairsof local morphisms. (For the proof consider the corresponding proof in [2] forcategory ModC with C being category Graph(L).)De�nition 4 (locality conditions). Two distributed morphismsf̂ = hf; � f i : Â! B̂ and ĝ = hg; � gi : Â! Ĉsatisfy the locality conditions if and only if{ f : A! B and g : A! C are injective,{ for each edge e 2 BE�f(AE ) and for each node y 2 AV , f(y) = s(e) implies� g(y) is bijective and{ for each edge e 2 CE�g(AE) and for each node y 2 AV , g(y) = s(e) implies� f (y) is bijective.In the next section it is described how the pushout construction on distributedgraphs can be used to model transformation rules along the lines of [8].4 Distributed Graph TransformationDistributed rules are given by a span of injective distributed morphisms. A trans-formation includes the transformation of the network graph as well as the lo-cal states. A local transformation is performed in each network node, whichis preserved by the network transformation. The network as well as the localtransformations are formulated as double-pushouts on graph morphisms. Thelocal graph morphisms between transformed local graphs are induced as uni-versal pushout morphisms. Furthermore, each network node and edge deleted,sees its local graphs and graph morphisms deleted as well. Creating a networknode or edge is combined with the creation of a corresponding local graph or



www.manaraa.com

graph morphism. The result of a distributed graph transformation is again a dis-tributed graph, since a distributed graph transformation can be characterizedby a double-pushout ([8]).De�nition 5 (distributed rule). A distributed rule p consists of a span(L̂ l̂ Î r̂! R̂)of injective distributed morphisms.A production p can be applied to a distributed graph Ĝ, if there is an oc-currence m̂ = hm; �mi : L̂ ! Ĝ of the left-hand side of the production in thedistributed graph. The derivation of a distributed graph via a distributed ruleis given by two pushouts in category Distr(NTG;L). In order to guarantee theexistence and uniqueness of the pushout complement as well as the component-wise construction of the pushouts, the morphism m̂ has to satisfy the so-calleddistributed gluing condition. This condition is satis�ed by m̂ if m is injective andsatis�es the gluing condition for (L l I r! R) (de�ned e.g. in [1]), �m(l(x)) sat-is�es the gluing condition for (L(l(x)) � l(x) I(x) �r(x)! R(x)) for all nodes x 2 IVand m̂ satis�es the connection and network condition. The connection conditionis satis�ed if whenever p deletes objects in some source local graph G(s(e)) resp.in some target graph G(t(e)), the local mapping G(e) must be changed corre-spondingly. If p adds new objects to a local graph G(s(e)), the local mappingG(e) must be extended, too. The network condition is satis�ed if a network nodeis only deleted together with its entire local graph and a network edge e can beonly deleted if the local graph G(s(e)) is completely mentioned in the rule, sothat the local mapping can also be deleted. A new edge e is only inserted at anexisting node v becoming the source node of e if G(v) is completely mentionedin the rule, i.e. the local morphism G(e) is completely speci�ed.De�nition 6 (direct derivation). Given a distributed rule p and a distributedmorphism m̂ : L̂ ! Ĝ that satis�es the distributed gluing condition, then a di-rect derivation Ĝ p;m̂=) Ĥ via p is given by two pushouts (1) and (2) in categoryDistr(NTG;L). r̂m̂ Ĝ Ĉ (2)Î R̂̂Hl̂(1)L̂Example 4. In Figure 7, a rule is given modeling the check in of a document fromthe workspace into the revision archive as a new revision. This document wasexported from the revision archive and imported from the workspace where itwas changed. Then it is exported by the workspace and imported by the revisionarchive where the changed document becomes a successive revision of the versionoriginally used for export.



www.manaraa.com

ImWS ExRA

W
or

ks
pa

ce

ExWS ImRA R
evisionarchive

W
or

ks
pa

ce

ExWS ImRA

ImWS ExRA

R
evisionarchiveFig. 7. Inserting a revision into the archive.We omit the intermediate graph in the notation of rules. Only the left-handand the right-hand side of a rule are shown. The span can be achieved from thisnotation due to the position of nodes and edges in the graphs.5 Local Views on a Distributed SystemDistributed rules as de�ned in Def. 5 allow one to specify actions within a dis-tributed system a�ecting several local systems in one rule application. An ex-ample is the rule in Figure 7, where an action a�ects the workspace and therevision archive. Thus, distributed actions are speci�ed in a global view. In theearly stage of system development, a global view on the entire distributed systemis desirable to get an overview. Once the network structure and its recon�gu-ration possibilities as well as the interfaces are �xed, the system developers aresupposed to take a local view on network nodes and local system parts runningon them. Therefore, we are going to restrict distributed rules to so-called lo-cal view rules. A local view graph for a local system in the distributed systemspeci�es the visible parts of the local system. It contains the local states of thelocal system itself and of export and import interfaces to which the local systemhas connections. While it is natural that a local system knows the exports fromwhere it imports, it is not as clear that it knows the local states of imports thatare connected to its exports. This information can be advantageously used toinform the imports immediately when the export changes which is not possibleotherwise.De�nition 7 (local view). Let tNTG : NTG! DiSy be a network type graphas de�ned in Def. 1. Let Ĝ = htG;Gi over G be a distributed graph and v anode in GV such that tNTG(tG(v)) = LoSy. An interface node w 2 GV , i.e.tNTG(tG(w)) = Imp or tNTG(tG(w)) = Exp, is an interface for v if w is directlyconnected to v, i.e. there is an edge e 2 GE such that sG(e) = w and tG(w) = v.Otherwise, the interface w is a remote interface w.r.t. v.The distributed graph Ĝ is called local view graph w.r.t. v if G is connectedand there does not exist a v0 in GV such that v0 6= v and tNTG(tG(v0)) = LoSy.To include remote import interfaces into the view of a local system is alsoformally motivated. If remote import interfaces would not be visible for a localsystem, the local system cannot delete any object of its own export interfacesas long as other systems import these objects, what is formally forced by thedistributed gluing condition.



www.manaraa.com

W
or

ks
pa

ce

ExWS

ImWSExRA

ImRAImRA ExRA

ExRA ImRAImRA

Local View Workspace

ExRA

ExRAImRA

Local View RevsionarchiveLocal View Revsionarchive

ImRA

ExRA ImWS

ExWSArchive
Revision

R
ev

is
io

na
rc

hi
ve Fig. 8. Three local view graphs for Figure 2.Example 5. Taking Figure 2, three local systems are shown which yields threelocal view graphs (Figure 8). In these graphs the local systems are white, inter-faces are grey and remote interfaces are �lled black.Given a local system, we now introduce distributed rules for the local system.The knowledge of the distributed system's state restricted to the local viewof the local system is su�cient to apply those rules. We distinguish rules fortransforming the local states of a local system, rules for creating new interfacesor new local systems and rules for the deletion of the local system or parts of it.De�nition 8 (local transformation rule). A local transformation rule is adistributed rule p = (L̂ l̂ Î r̂! R̂) where{ the network graph morphisms l and r are the identity on I, i.e. l = r = idIand{ L̂, Î and R̂ are local view graphs w.r.t. v 2 IV .The de�nition of a local transformation rule ensures that the network graphremains unchanged and that only local states are transformed. The transfor-mation of local states includes deletion, preservation and creation of objects inthe state. With local transformation rules di�erent kinds of actions can be de-scribed. If remote interfaces are not involved, local actions are described. More-over, asynchronous or synchronous actions can be modeled. In these cases theremote interfaces are just read or, in the synchronous case, are allowed to bechanged. Here, the same actions have to be performed by those local systemswhich own these interfaces.In order to additionally transform the network graph, local deletion and localcreation rules are introduced. A local system is allowed to delete only itself andits interfaces, but not remote interfaces. By means of the local creation rule newlocal systems with their interfaces can be created.De�nition 9 (local creation rule and local deletion rule). Rule p is alocal creation rule if{ L̂ does not contain any local system node,{ R̂ is a local view graph w.r.t. v in RV ,



www.manaraa.com

R
evisionarchive

ExRA

ImRA

W
or

ks
pa

ce

ExRA

ImRA

ExRA

ExWS

ImWS

ImRAFig. 9. Local creation rules for a workspace (left) and for an archive (right).
W

or
ks

pa
ce

W
or

ks
pa

ce

ExWS ImRA

ImWS ExRA

ExWS ImRA

ImWS ExRAFig. 10. The workspace exports a previously imported document again.{ l̂ is the identity on Î and Î = L̂ are subgraphs of R̂,{ all remote interface nodes for v in L are preserved, i.e. if w 2 LV is anremote interface for v then w 2 lV (I), and{ no new remote interface node is created, i.e. there is not any interface nodev which is not in the codomain of r.Rule p is a local deletion rule if it the inverse rule of a local creation rule.De�nition 10 (local view rule and local view grammar). Given a networktype graph tNTG : NTG ! DiSy and a local system node x in NTG, i.e.tNTG(x) = LoSy, a local view rule for x is each local transformation, localdeletion and local creation rule such that each local system node v occuring in therule is of type x, i.e. tL(v) = x or tR(v) = x. A local view grammar LGG(x) =P (x) for x is given by a set of local view rules for x.Example 6. Two di�erent kinds of local view grammars are necessary for therunning example: one handles rules concerning workspaces, the second one is forrevision archives. Local view rules for the workspace must include rules for check-ing in from the workspace into a revision archive as shown by the local trans-formation rule in Fig. 10. A document previously imported by the workspace, isexported again.3 In Figure 9, a local creation rule for a workspace is given onthe left. On the right the local creation rule for revision archives is shown.In the local view grammar of the revision archive a rule corresponding toFig. 10 can be found. It is shown in Figure 11 and used to import a revisionexported by the workspace and adding it as a successor in the revision archive.The application of the local rules in Fig. 11 and Fig. 10 on the same documentshould lead to the same result as the application of the global rule in Fig. 7, i.e. itmust be ensured somehow that a changed document in the workspace is inserted3 The case where a new document is created is omitted here.



www.manaraa.com

R
evisionarchive

R
evisionarchive

ExWS ExWSImRA ImRA

ExRAExRA ImWSImWSFig. 11. The revision archive requests a document from the workspace to import it.into the revision archive as a direct successor after the revision from which it wasoriginally checked out. To achieve this, the local rules have to be synchronized.6 Synchronizing Local Rules for Communication betweenLocal SystemsThis section is concerned with communication between local views. Whereasasynchronous communication is modeled by sequential application of local viewrules, synchronous communication is expressed by amalgamating local view rulesover a common subrule in category Distr(NTG;L) [5]. While the asynchronouscommunication describes the usage of a service already available in some inter-face, the synchronization models a kind of service request for objects not alreadyavailable in the interface (cf. the rules in Figures 10 and 11).For amalgamation so called interface subrules are necessary. An interfacesubrule ps of a local view rule p for a local system v is a distributed rule, whereall graphs of ps are subgraphs of the corresponding graphs in p such that theycontain only interfaces of v, but not v itself. Since we intend to describe syn-chronization via interface subrules and communication takes place over exportand import interfaces, we require handles of export and import interfaces in thenetwork graphs of the subrule. More exactly, a handle consists of an export inter-face and an import interface connected by an edge. This requirement prohibitsexport interfaces without an import interface connected, and vice versa. Consid-ering local deletion and creation rules which have to be synchronized, handlescan be found only on the left or on the right-hand side of an interface rule.De�nition 11 (interface subrule). Let ps = (L̂s l̂s Îs r̂s! R̂s) be a distributedrule such that{ Ls, Is and Rs contain interface nodes only,{ there is an X 2 fL; I;Rgsuch that for each export node v 2 Xs, i.e. tNTG(tX (v)) =Exp, there is an import node v0 2 Xs, i.e. tNTG(tX (v0)) = Imp, and an edgee : v0 ! v and{ there is an X 2 fL; I;Rg such that for each import node v0 2 Xs , i.e.tNTG(tX (v0)) = Imp, there is an export node v 2 Xs, i.e. tNTG(tX(v)) =Exp, and an edge e : v0 ! v.



www.manaraa.com

Then, ps is an interface subrule of p = (L̂ l̂ Î r̂! R̂) if there are injectivedistributed morphisms înL : L̂s ! L̂, înI : Îs ! Î and înR : R̂s ! R̂, calledsubrule embeddings such that înL � l̂s = l̂ � înI and înR � r̂s = r̂ � înI .A distributed rule has to be synchronized with others, if it contains one ormore remote interfaces changed by the rule. This part of the rule just reectswhat has to be done by remote systems within their interfaces (cf. the rulesin Figures 10 and 11). To synchronize two rules an interface subrule is neededwhich contains at most the intersection of the two rules, but is also allowed tobe smaller. If the distributed rule resulting from a synchronization step still con-tains remote interfaces, it can and has to be further synchronized. A distributedrule not fully synchronized is not applicable because of the distributed gluingcondition (namely the connection condition).De�nition 12 (synchronization of rules). Two distributed rules p1 and p2are synchronized w.r.t. s if s is an interface subrule embedding of p1 and p2consisting of interface subrule ps and the subrule embeddings înX1 , înX2 satisfythe locality conditions in Def. 4 for X 2 fL; I;Rg. Moreover, for each interfacew in X̂s, either w is a remote interface for all local systems in X̂1 or w is aremote interface for all local systems in X̂2.The synchronized rule of p1 and p2 via s is given by the amalgamated rulep1 �s p2 = (L̂ l̂ Î r̂! R̂). The distributed graphs L̂, Î and R̂ are the pushoutobjects given by the pair înL1 and înL2 , the pair înI1 and înI2 and the pair înR1and înR2 in Distr(NTG;L). The rule morphisms l̂ and r̂ are obtained as theuniversal pushout morphisms.Example 7. Regarding the check-in of a revision from the workspace into therevision archive, its intended semantics is described as a revision which becomesa successor of that revision in the archive from which it was checked out. In orderto achieve this, we have to synchronize the local view rule for a workspace inFigure 10 and the local view rule for a revision archive in Figure 11. These rulesare not applicable separately because of the distributed gluing condition. E.g.the revision archive rule in Figure 11 is not applicable without synchronization,because of the insertion of the revision in the export interface of the workspace.Because of the local creation rule for a workspace there is always an edge froman export of a workspace to the workspace itself. Therefore, the revision insertedhas to be assigned to a revision in the workspace as well, which, however, is notspeci�ed by the rule.The synchronized rule of the rules in Figure 11 and Figure 10 using theinterface subrule in Figure 12 looks like that in Fig. 7.Next, we construct all possible rules for a given set of local view rules usedto model the operational semantics of the distributed system. Here, the rules aresynchronized as much as possible, i.e. the largest interface subrule embeddingsare chosen for synchronization. An interface subrule embedding is one of thelargest if there no other interface subrule which contains the rule of the �rst



www.manaraa.com

ExWS ImRA

ExRAImWS

ExWS ImRA

ExRAImWSFig. 12. Interface subrule for Fig. 10 and 11 to construct the rule in Fig. 7embedding as subrule. Since an interface subrule may be the empty rule, thelargest interface subrule always exists.De�nition 13 (set of synchronized rules). Let LV Rules be a set of localview rules, then, Syn(LV Rules) is the smallest set of rules such that{ p 2 Syn(LV Rules) for all p 2 LV Rules, and{ p1 �s p2 2 Syn(LV Rules) for all p1; p2 2 Syn(LV Rules) where s is one ofthe largest interface subrule embedding of p1 and p2, i.e. there is no interfacesubrule embedding s0 of p1 and p2 such that ps is a subrule of ps0 .A distributed system grammar w.r.t. a network type graph tNTG : NTG !DiSy consists of a global start graph and a local view grammar for each localsystem type in NTG, i.e. for each v in NTGV such that tNTG(tG((v)) = LoSy.For the operational semantics the set of all rules that can be constructed by thelocal view rules according to De�nition 13 are considered.De�nition 14 (distributed system grammar). Let tNTG : NTG ! DiSybe a network type graph and LS = fv 2 NTGV jtNTG(v) = LoSyg be the setof all local system types in NTG. A distributed system grammar w.r.t. NTGis a pair DSG(NTG) = hĜ0; (LGG(v))v2LSi where Ĝ0 is a distributed graph,LGG(v) = P (v) is a local view grammar for each v 2 LS.The operational semantics for a distributed system grammar DSG(NTG)is given by the set of all distributed derivations starting at Ĝ0 using rules ofSyn(Sv2LS P (v)).Example 8. The set of synchronized rules SynRules of our case study containsfor example the synchronized rule in Figure 7 created by the synchronization ofthe local view rules in Figures 11 and 10. It may also contain the correspondinglocal view rules, but these are never applicable due to the distributed gluingcondition. Also the rules in Figure 9 should be in SynRules.7 ConclusionIn this paper, we introduced local views on distributed graph transformation. Alocal view is concerned with one local system, its import and export interfaces,and remote import and export interfaces to which the local system may haveconnections. Local systems can communicate asynchronously by simply apply-ing local view rules sequentially, or synchronously by constructing amalgamated



www.manaraa.com

distributed rules from local view rules. The concepts of local views are presentedon graphs without attributes. We expect that they can be directly lifted to at-tributed graphs. Moreover, application conditions for rules should be integratedto support a convenient speci�cation of distributed systems by distributed graphtransformation. The integration { formally as well as informally { of graph trans-formationwith attributes and application conditions has been done in [7].We usethe amalgamated rule construction to describe the synchronization between localview activities. In general, the resulting rules are not local view rules anymore,but distributed rules in a global setting. For the operational semantics de�nitionof a distributed system all possible synchronizations of rules are computed.References1. A. Corradini, U. Montanari, F. Rossi, H. Ehrig, R. Heckel, and M. L�owe. Handbookof Graph Grammars and Computing by Graph Transformations. Vol. I: Foundations,chapter Algebraic Approaches to Graph Transformation Part I: Basic Concepts andDouble Pushout Approach. World Scienti�c, 1997.2. M. Koch. Integration of Graph Transformation and Temporal Logic for the Speci-�cation of Distributed Systems. PhD thesis, Technische Universit�at Berlin, FB 13,1999. to defend.3. Manuel Koch. Bedingte verteilte Graphtransformation und ihre Anwendung aufverteilte Transaktionen. Technical Report 97-11, TU Berlin, 1997.4. Manuel Koch and Gabriele Taentzer. Distributing Attributed Graph Transforma-tions. In Proc. Workshop on \General Theory of Graph Transformation Systems",Bordeaux, 1997.5. G. Taentzer. Parallel high-level replacement systems. Theoretical Computer Science,(186), 1997.6. G. Taentzer, I. Fischer, M. Koch, and V. Volle. Handbook of Graph Grammarsand Computing by Graph Transformations, volume III, chapter Distributed GraphTransformation with Application to Visual Design of Distributed Systems. WorldScienti�c, 1998. to appear.7. G. Taentzer, I. Fischer, M Koch, and V. Volle. Visual design of distributed sys-tems by graph transformation. In G. Rozenberg, U. Montanari, H. Ehrig, andH.-J. Kreowski, editors, Handbook of Graph Grammars and Computing by GraphTransformation, Volume 3: Concurrency and Distribution. World Scienti�c, 1999.to appear.8. Gabriele Taentzer. Parallel and Distributed Graph Transformation: Formal Descrip-tion and Application to Communication-Based Systems. PhD thesis, TU Berlin,1996. Shaker Verlag.9. Karsten Victor Volle. Verteilte Kon�gurationsverwaltung: COMAND. Technicalreport, Basys GmbH, Am Weichselgarten 4, 91058 Erlangen, 1997.


