Local Views on Distributed Systems and their
Communication

Ingrid Fischer*!', Manuel Koch?, Gabriele Taentzer?

! International Computer Science Institute, Berkeley, USA, and IMMD?2, University
of Erlangen-Nuremberg, Germany, idfische@informatik.uni-erlangen.de
2 Technical University of Berlin, Germany, {mlkoch,gabi}@cs.tu-Berlin.de

Abstract. Distributed graph transformation has been used to specify
static as well as dynamic aspects of distributed systems. To support
distributed designs by different developers, local views are introduced. A
local view on a distributed system consists of one local system, its import
and export interfaces, and connected remote interfaces. The behavior of
a local system is specified by a set of graph rules that are applicable only
to the local view of the local system. Local systems communicate either
synchronously or asynchronously via their import and export interfaces.
Asynchronous communication is modeled by sequential application of
graph rules, synchronous communication by the amalgamation of graph
rules. We compose a distributed system grammar from the rule sets for
local systems. The operational semantics of the distributed system is
given by distributed transformation sequences.

1 Introduction

Distributed graph transformation has been presented as a visual means for speci-
fying static as well as dynamic aspects of distributed systems [8, 3, 6]. Whereas [8]
introduces the basis concepts of distributed graph transformation based on the
double-pushout approach to graph transformation, several extensions towards a
specification technique customized for distributed systems have been proposed.
In [3], distributed graph rules were equipped with application conditions for ad-
ditional control of the rule application. Furthermore, attribution concepts have
been integrated [4] to specify occurring data. In [6], both extensions have been
combined to yield a specification technique suitable for describing the main as-
pects of distributed systems.

However, distributed graph transformation as introduced up to now assumes
a global view on the whole distributed system, which is desirable in the early
stage of system development to get an overview. In this first phase, network and
interface structure graphs are developed and the principle network activities and
interface services are described by distributed graph rules. After the network
structure and its reconfiguration possibilities as well as the interfaces are fixed,

* 1. Fischer was partly supported by a postdoc stipend of “Gemeinsamen Hochschul-
sonderprograms II1 von Bund und Landern” from the DAAD.

www.manaraa.com

the system developers are supposed to take a local view on network nodes and
local system parts running on them.

To support this second phase of the development process as well, local views
on distributed graphs are introduced in this paper. A local view contains a local
system itself, 1ts import and export interfaces and remote import and export in-
terfaces to which the local system has connections. The behavior of a local system
is specified by a set of local view rules, i.e. graph rules applicable only to the lo-
cal view of the local system. Two local systems can communicate synchronously
or asynchronously via their import and export interfaces. Asynchronous com-
munication is modeled by sequential application of local view rules, whereas
synchronous communication is formalized by rule amalgamation as presented in
[5] for arbitrary cocomplete categories.

The synchronization of local view rules describes a kind of service request
which is not already available, but can be computed. The result is put into an
export interface.

A distributed system grammar contains the set of local view rules for each
local system participating in the distributed system. The operational semantics
of the distributed system is given by the set of all distributed transformation
sequences starting at the start graph, which represents the initial state of the
distributed system.

To simplify the presentation in this paper, we present concepts for labeled
graphs instead of attributed graphs. All main concepts of distributed graph
transformation and their local views are illustrated in a case study concerning
distributed configuration management [9].

2 Distributed Configuration Management

First, we introduce a case study dealing with Distributed Configuration Manage-
ment, as described in [9], for verifying the usability of the ideas developed later
on.!

The size of software projects and requirements for high quality make it dif-
ficult to plan and coordinate projects. Two third of time and money spent on
them go into maintenance and development after the project was finished. Fur-
thermore, the knowledge needed to complete a greater larger project is hardly
available in a single company. External project partners must contribute. Often
it 1s also cheaper to allocate tasks to external experts. One possible scenario is
to have just the core developers located in the original company. Additional per-
sonnel is situated around the world wherever the knowledge needed is available
for a low price. With an ever growing demand on distributed software develop-
ment, communication, coordination and quality management are needed, as all
project sites must have access to a consistent actual set of project documents.
When a project site changes a document leading to a new revision, it must be-
come known in all other project sites, too. This is especially a problem when no

! The authors would like to thank V. Volle for numerous discussions.

www.manaraa.com

o o oo Jo ()

I

Fig. 1. The type graph DiSy.

central online archive can be used by all project partners. In this situation each
project site has 1ts own reviston archive, a local repository where all documents
and their different revisions are stored. Documents are replicated among revision
archives to ensure that each project site has an up-to-date document set. This
can be done by different means via the Internet daily, hourly, weekly or even by
sending a floppy via postal mail. Workspaces are used when a revision archive
document is to be changed or a new document has to be inserted. A workspace
i1s connected to one archive and each archive may have an arbitrary number of
workspaces. When the owner of a workspace wants to change a document he/she
checks it out from the archive into the workspace. Then the actual change can
take place or something new can be created. When this work is finished, the
documents are checked back into the revision archive. In the following sections
parts such a system will be described with distributed graph transformations.

3 Distributed Typed Graphs

We consider a distributed system consisting of local systems communicating via
export and import interfaces. In export interfaces, local systems present objects
accessible for remote systems whereas import interfaces contain local copies of
objects from remote export interfaces. This idea of a distributed system’s topol-
ogy 1s modeled in the graph DSy shown in Figure 1. We provide a node LoSy
for local systems, a node Eaxp for export interfaces and a node I'mp for im-
port interfaces. Connections are possible between local systems and any type of
interface and between import and export interfaces.

The nodes of the graph DiSy are abstract in the sense that they show only
the main components of a distributed system. In order to instantiate the abstract
types for a concrete application, an application specific graph NT'G is chosen.
This graph has to possess the structure of our distributed system, which is
ensured by the existence of a graph morphism tyrg : NTG — DiSy, called a
network type graph in the following.

Definition 1 (network graph). A network type graph is a graph morphism
tnre : NTG — DiSy. Each graph morphism t¢ : G — NTG in NTG 1s a
network graph w.r.t. NTG. We often write simply NTG for the network type
graph t N7t and G for a network graph w.r.t. NTG if no confusion s possible.

Ezample 1. The network type graph for the distributed system of the case study
as introduced in Section 2 is shown in Figure 2 on the right-hand side. It con-
tains two kinds of local systems, namely Workspace and Revisionarchive, two

www.manaraa.com

Revisionarchive
oy G
mRA BRAImRA s S
/// Ss s “ 7
4 Y s //

Revisionarchive
Workspace
o
<
K

Revisionarchive RA

Fig.2. A network graph modeling two revision archives with a workspace connected
to one of the revision archives (left) and its network type graph (right).

different kinds of export interfaces, namely ExWS for workspaces and EFzRA for
revision archives, and two different types of import interfaces ImWS and ImRA
for workspaces and revision archives, respectively.? Via the interfaces the repli-
cation between different archives and the checking in and out between archive
and workspace can be realized. In Figure 2 on the left-hand side a network graph
w.r.t. the network type graph on the right is shown. It represents a snapshot of a
small project with two revision archives and one workspace, together with their
interfaces.

The internal state of local systems and interfaces is described by a labeled
graph. To simplify the presentation of the paper, we assume a common label set
L for all local systems and interfaces.

Ezample 2. The internal states of workspaces and revision archives contain the
revisions of documents (text files, code files, etc.) the project partners work on.
Documents belonging together are packed into configurations that can contain
other configurations. Each time a document or a whole configuration is changed
the old version is kept and the new one is stored as a new revision of the old
one. Documents or configurations cannot be changed in the revision archive. To
change a document, it has to be checked out into a workspace. However, only
one document can be checked out into the workspace and configurations have
to be checked out completely. An example of a revision archive’s local graph
and its label alphabet is given in Figure 3. It consists of two configurations,
where one configuration is a revision of the other. Each configuration contains
two documents with one existing in both configurations.

Given a network graph G, each node in Gy is refined to an L-labeled graph.
If the node is a local system, this labeled graph represents the local state of the
local system. If the node is an interface, it is the local state of the interface. An
edge in Gg indicates a connection between local systems and their interfaces
or between interfaces. This connection is refined to a label-preserving graph
morphism that shows the relation between the local state of the source node of
the network edge and its target node.

2 It may be also possible to use just one export interface of a revision archive for
workspaces and other revision archives.

www.manaraa.com

Fig. 3. A local graph consisting of one configuration with two documents and its revi-
sions.

The refinement of a network graph t¢ : G — NTG w.r.t. a network type
graph NT'G is formally defined by a functor from the small category G induced
by the graph G into the category Graph(L) of L-labeled graphs and label pre-
serving graph morphisms. A distributed graph integrates topological and local
state aspects.

Definition 2 (distributed graph). Given a network type graph tyra : NTG —
DiSy and a set L of labels. A distributed graph over G s a pair G = (te,G)
wheretg : G — NTG is a network graph w.r.t. NTG and G : G — G(Graph(L))
is a graph morphism from G to the underlying graph G(Graph(L)) of the cate-
gory Graph(C).

For a distributed graph G’, the L-graph G(v) for each v in Gy is called the
local state of v. For each edge e in G, the graph morphism G(e) is called the local
graph morphism for e. A morphism between distributed graphs G and I over
G resp. H relates the network graphs by means of a graph morphism between
G and H, and relates the local state of each node in GG to a local state in H
by means of a label-preserving graph morphism. It can be seen as a natural
transformation from G to H o f.

Definition 3 (distributed morphism). A distributed morphism between dis-
tributed graphs G over G and H over H is a pair f ={f,7) where f : G = H
is a graph morphism and 7 : G = H is a family of arrows {r(a)la € Gy} such
that

— for each node a in G, (a) : G(a) = H(f(a)) is a label preserving graph
morphism and

— for each edge e : i — j in G, 7(j) o G(e) = H(f(e)) o 7(¢).

Ezrample 3. An example of a distributed graph is shown in Figure 4. The level
refinement is given in the left-hand side of the figure. Additionally, the notation
used in the following is shown. It shows the local states of network nodes and the
local graph morphisms for network edges, but omits the explicit representation

www.manaraa.com

network graph notation:
3 3 G P »v RA

R

local states .\. V

Fig.4. A distributed graph and its notation.

b
f
o] — (o) w]

2
<

Fig.5. A distributed morphism.

of the network graph itself and its refinement. However, a name at the local
state indicates the network node 1s also found in a local state. The local system
of type RA and the interface of type FxRA are refined to labeled graphs that
represent their local state (for the sake of readability we omit labels in the
figures). The network edge is refined to a graph morphism. In the example of a
distributed morphism f G = Hin Figure 5, the graph morphism f and the
local morphisms 7(a) and 7(b) map elements to elements with the same name.

For a given network type graph NT'G and a label set £, distributed graphs
and distributed morphisms form a category Distr(NTG, L). Composition of
distributed morphisms 1s defined componentwise for graph morphisms between
network graphs and local graph morphisms. The identity for each distributed
graph G is given by sz = (idg,) where 7(a) = idg(4) for each a in Gy.

The pushout of two distributed morphisms f = (f, 77y A= Band § =
(g,79) : A — (' is constructed by constructing first the pushout of f and g in
Graph. Then the pushout of 7/ (a) and 79(a) for each node a in Ay in category
Graph(L) is constructed. The pushout object and the pushout morphisms for f
and g in Disty(NTG, L) are then made up of these pushout components and the
resulting unique pushout morphisms. However, this construction does not yield
a pushout for all distributed morphisms as the counter examples in Figure 6
show.

In the example on the left, a node i1s added to a local source graph. In order
to make the local graph morphism total, a node is inserted in the target graph

www.manaraa.com

Al

B1

Fig. 6. Examples of a non componentwise pushout construction.

as well. The second example shows that the gluing of two nodes in a local source
graph is propagated to the target graph in order to maintain the well-definedness
of the local graph morphism.

We provide locality conditions ensuring that the pushout over two distributed
morphisms can be constructed componentwise for the network and all pairs
of local morphisms. (For the proof consider the corresponding proof in [2] for
category Mod¢ with C' being category Graph(L).)

Definition 4 (locality conditions). Two distributed morphisms
f:<f,7f>:A—>B andﬁ:(g,r%:ﬁ—)é
satisfy the locality conditions if and only if

— f:A—=> B andg: A — C are injective,

— for each edge e € Bg— f(Ag) and for each node y € Ay, f(y) = s(e) implies
79(y) is bijective and

— for each edge e € Cg —g(Ag) and for each node y € Av, g(y) = s(e) implies
¥ (y) is bijective.

In the next section it is described how the pushout construction on distributed
graphs can be used to model transformation rules along the lines of [8].

4 Distributed Graph Transformation

Dustributed rules are given by a span of injective distributed morphisms. A trans-
formation includes the transformation of the network graph as well as the lo-
cal states. A local transformation is performed in each network node, which
1s preserved by the network transformation. The network as well as the local
transformations are formulated as double-pushouts on graph morphisms. The
local graph morphisms between transformed local graphs are induced as uni-
versal pushout morphisms. Furthermore, each network node and edge deleted,
sees 1ts local graphs and graph morphisms deleted as well. Creating a network
node or edge is combined with the creation of a corresponding local graph or

www.manaraa.com

graph morphism. The result of a distributed graph transformation is again a dis-
tributed graph, since a distributed graph transformation can be characterized

by a double-pushout ([8]).

Definition 5 (distributed rule). A distributed rule p consists of a span
(LET5R)
of ingective distributed morphisms.

A production p can be applied to a distributed graph G, if there is an oc-
currence m = (m, ™) : L — G of the left-hand side of the production in the
distributed graph. The derivation of a distributed graph via a distributed rule
is given by two pushouts in category Distr(NTG, £). In order to guarantee the
existence and uniqueness of the pushout complement as well as the component-
wise construction of the pushouts, the morphism m has to satisfy the so-called
distributed gluing condition. This condition is satisfied by m if m is injective and
satisfies the gluing condition for (L P N R) (defined e.g. in [1]), 7™ (I(x)) sat-

7' () 7" (@)

isfies the gluing condition for (L({(z)) < Z(x) = R(x)) for all nodes x € Iy
and m satisfies the connection and network condition. The connection condition
is satisfied if whenever p deletes objects in some source local graph G(s(e)) resp.
in some target graph G(¢(e)), the local mapping G(e) must be changed corre-
spondingly. If p adds new objects to a local graph G(s(e)), the local mapping
G(e) must be extended, too. The network condition is satisfied if a network node
is only deleted together with its entire local graph and a network edge e can be
only deleted if the local graph G(s(e)) is completely mentioned in the rule, so
that the local mapping can also be deleted. A new edge e 1s only inserted at an
existing node v becoming the source node of e if G(v) is completely mentioned
in the rule, i.e. the local morphism G(e) is completely specified.

Definition 6 (direct derivation). Given a distributed rule p and a distributed
morphism m . L — G that satisfies the distributed gluing condition, then a di-

rect derivation G 22 H via p is given by two pushouts (1) and (2) in category
Distr(NTG, L).

L I R
SN
G ¢ H

Ezample 4. In Figure 7, a rule is given modeling the check in of a document from
the workspace into the revision archive as a new revision. This document was
exported from the revision archive and imported from the workspace where it
was changed. Then it is exported by the workspace and imported by the revision
archive where the changed document becomes a successive revision of the version
originally used for export.

www.manaraa.com

EXWS ImRA EXWS ImRA

3 & 3 — - T @
g (O i [akind) G
5 3 :> 5|/ S

IMWS ExRA s IMWS ExRA $

Fig. 7. Inserting a revision into the archive.

We omit the intermediate graph in the notation of rules. Only the left-hand
and the right-hand side of a rule are shown. The span can be achieved from this
notation due to the position of nodes and edges in the graphs.

5 Local Views on a Distributed System

Distributed rules as defined in Def. 5 allow one to specify actions within a dis-
tributed system affecting several local systems in one rule application. An ex-
ample 1s the rule in Figure 7, where an action affects the workspace and the
revision archive. Thus, distributed actions are specified in a global view. In the
early stage of system development, a global view on the entire distributed system
is desirable to get an overview. Once the network structure and its reconfigu-
ration possibilities as well as the interfaces are fixed, the system developers are
supposed to take a local view on network nodes and local system parts running
on them. Therefore, we are going to restrict distributed rules to so-called lo-
cal view rules. A local view graph for a local system in the distributed system
specifies the visible parts of the local system. It contains the local states of the
local system itself and of export and import interfaces to which the local system
has connections. While 1t is natural that a local system knows the exports from
where 1t imports, it is not as clear that it knows the local states of imports that
are connected to its exports. This information can be advantageously used to
inform the imports immediately when the export changes which is not possible
otherwise.

Definition 7 (local view). Let inpe : NTG — DiSy be a network type graph
as defined in Def. 1. Let G = (tg,G) over G be a distributed graph and v a
node in Gy such that typa(tg(v)) = LoSy. An interface node w € Gy, i.e.
tnra(ta(w)) = Imp ortyra(tg(w)) = Exp, is an interface for v if w is directly
connected to v, i.e. there is an edge e € G such that s%(e) = w and t%(w) = v.
Otherwise, the interface w ts a remote interface w.r.t. v.

The distributed graph G is called local view graph w.r.t. v if G s connected
and there does not exist a v' in Gy such that v' # v and tyre(ta(v')) = LoSy.

To include remote import interfaces into the view of a local system is also
formally motivated. If remote import interfaces would not be visible for a local
system, the local system cannot delete any object of its own export interfaces
as long as other systems import these objects, what is formally forced by the
distributed gluing condition.

www.manaraa.com

Local View Revsionarchive Local View Revsionar chive Local View Workspace

| o [|
! L Revision L .
o IMRA ExRA'! IMRA BxRA ArChive ImRA 1 IImMRA ExWS !
> . I o
:: @
' § o D g':
3 : H 5 =
o4 I ! ! !
| IMRA! | EXRA IMWS! | Ex ImWs !

Fig. 8. Three local view graphs for Figure 2.

Ezample 5. Taking Figure 2, three local systems are shown which yields three
local view graphs (Figure 8). In these graphs the local systems are white, inter-
faces are grey and remote interfaces are filled black.

Given a local system, we now introduce distributed rules for the local system.
The knowledge of the distributed system’s state restricted to the local view
of the local system is sufficient to apply those rules. We distinguish rules for
transforming the local states of a local system, rules for creating new interfaces
or new local systems and rules for the deletion of the local system or parts of 1t.

Definition 8 (local transformation rule). A local transformation rule is a
distributed rule p = (ﬁ P SN R) where

— the network graph morphisms | and r are the identity on I, t.e. | = r = id;
and
- L I and R are local view graphs w.r.t. v € Iy .

The definition of a local transformation rule ensures that the network graph
remains unchanged and that only local states are transformed. The transfor-
mation of local states includes deletion, preservation and creation of objects in
the state. With local transformation rules different kinds of actions can be de-
scribed. If remote interfaces are not involved, local actions are described. More-
over, asynchronous or synchronous actions can be modeled. In these cases the
remote interfaces are just read or, in the synchronous case, are allowed to be
changed. Here, the same actions have to be performed by those local systems
which own these interfaces.

In order to additionally transform the network graph, local deletion and local
creation rules are introduced. A local system is allowed to delete only itself and
its interfaces, but not remote interfaces. By means of the local creation rule new
local systems with their interfaces can be created.

Definition 9 (local creation rule and local deletion rule). Rule p is a
local creation rule if

— L does not contain any local system node,
— R s a local view graph w.r.t. v in Ry,

www.manaraa.com

Q

>°D Qa@@ >RAD

Fig. 9. Local creation rules for a workspace (left) and for an archive (right).

BAIyp Lo S INSY

RA

Workspace

Workspace

Fig. 10. The workspace exports a previously imported document again.

— 1 is the wdentity on I and I =L are subgraphs of R,

— all remote interface nodes for v in L are preserved, i.e. if w € Ly is an
remote interface for v then w € Iy (I), and

— no new remote wnterface node is created, 1.e. there is not any interface node
v which is not in the codomain of r.

Rule p 1s a local deletion rule if it the inverse rule of a local creation rule.

Definition 10 (local view rule and local view grammar). Given a network
type graph tnrg @ NTG — DiSy and a local system node & wmn NTG, e
tnra(z) = LoSy, a local view rule for x is each local transformation, local
deletion and local creation rule such that each local system node v occuring in the
rule is of type x, i.e. tp(v) = & ortr(v) = x. A local view grammar LGG(z) =
P(z) for x is given by a set of local view rules for x.

Ezrample 6. Two different kinds of local view grammars are necessary for the
running example: one handles rules concerning workspaces, the second one is for
revision archives. Local view rules for the workspace must include rules for check-
ing in from the workspace into a revision archive as shown by the local trans-
formation rule in Fig. 10. A document previously imported by the workspace, is
exported again.® In Figure 9, a local creation rule for a workspace is given on
the left. On the right the local creation rule for revision archives is shown.

In the local view grammar of the revision archive a rule corresponding to
Fig. 10 can be found. It is shown in Figure 11 and used to import a revision
exported by the workspace and adding it as a successor in the revision archive.

The application of the local rules in Fig. 11 and Fig. 10 on the same document
should lead to the same result as the application of the global rule in Fig. 7, 1.e. 1t
must be ensured somehow that a changed document in the workspace is inserted

® The case where a new document is created is omitted here.

www.manaraa.com

IAIYDJeUo S Iy

BAILD JeUOSINSY

Fig. 11. The revision archive requests a document from the workspace to import it.

into the revision archive as a direct successor after the revision from which 1t was
originally checked out. To achieve this, the local rules have to be synchronized.

6 Synchronizing Local Rules for Communication between
Local Systems

This section 1s concerned with communication between local views. Whereas
asynchronous communication is modeled by sequential application of local view
rules, synchronous communication is expressed by amalgamating local view rules
over a common subrule in category Distr(NT'G, £) [5]. While the asynchronous
communication describes the usage of a service already available in some inter-
face, the synchronization models a kind of service request for objects not already
available in the interface (cf. the rules in Figures 10 and 11).

For amalgamation so called interface subrules are necessary. An interface
subrule p; of a local view rule p for a local system v is a distributed rule, where
all graphs of ps; are subgraphs of the corresponding graphs in p such that they
contain only interfaces of v, but not v itself. Since we intend to describe syn-
chronization via interface subrules and communication takes place over export
and import interfaces, we require handles of export and import interfaces in the
network graphs of the subrule. More exactly, a handle consists of an export inter-
face and an import interface connected by an edge. This requirement prohibits
export interfaces without an import interface connected, and vice versa. Consid-
ering local deletion and creation rules which have to be synchronized, handles
can be found only on the left or on the right-hand side of an interface rule.

Definition 11 (interface subrule). Let p, = (ﬁs & I, 5 Rs) be a distributed
rule such that

— Lg, Iy and Ry contain interface nodes only,

— thereis an X € {L, I, R}such that for each export node v € X, i.e. tnra(tx (v)) =
Exp, there is an import node v/ € Xy, i.e. tyrg(tx (v')) = Imp, and an edge
e:v — v and

— there is an X € {L,I, R} such that for each import node v € X; , i.e.
tnra(tx (v')) = Imp, there is an export node v € X, i.e. tnpa(tx(v)) =
Exzp, and an edge e : v/ — v.

www.manaraa.com

Then, ps s an interface subrule of p = (ﬁ Aé I i)) if there are injective

distributed morphisms mL L — L mI : Is — 1 and ing : R = R called
subrule embeddings such that mL o ls =lo mI and mR ofs =fro mI

A distributed rule has to be synchronized with others, if it contains one or
more remote interfaces changed by the rule. This part of the rule just reflects
what has to be done by remote systems within their interfaces (cf. the rules
in Figures 10 and 11). To synchronize two rules an interface subrule is needed
which contains at most the intersection of the two rules, but 1s also allowed to
be smaller. If the distributed rule resulting from a synchronization step still con-
tains remote interfaces, it can and has to be further synchronized. A distributed
rule not fully synchronized is not applicable because of the distributed gluing
condition (namely the connection condition).

Definition 12 (synchronization of rules). Two distributed rules p; and ps
are synchronized w.r.t. s if s 15 an interface subrule embedding of p1 and ps
consisting of interface subrule ps and the subrule embeddings inx,, inx, satisfy
the locality conditions in Def. | for X € {L, I, R}. Moreover, for each interface
w mn Xs, either w 1s a remote interface for all local systems in X1 orw is a
remote interface for all local systems in Xo.

The synchronized rule of py and ps via s is given by the amalgamated rule

p1 Bs p2 = (ﬁ P N R) The distributed graphs LI and R are the pushout
objects gwen by the pair ing, and 1 mLQ, the pair iny, and i m12 and the pair ing,
and ing, in Distr(NTG, L). The rule morphisms [and # are obtained as the
unwwersal pushout morphisms.

Ezample 7. Regarding the check-in of a revision from the workspace into the
revision archive, its intended semantics 1s described as a revision which becomes
a successor of that revision in the archive from which it was checked out. In order
to achieve this, we have to synchronize the local view rule for a workspace in
Figure 10 and the local view rule for a revision archive in Figure 11. These rules
are not applicable separately because of the distributed gluing condition. E.g.
the revision archive rule in Figure 11 is not applicable without synchronization,
because of the insertion of the revision in the export interface of the workspace.
Because of the local creation rule for a workspace there is always an edge from
an export of a workspace to the workspace itself. Therefore, the revision inserted
has to be assigned to a revision in the workspace as well, which, however, 1s not
specified by the rule.

The synchronized rule of the rules in Figure 11 and Figure 10 using the
interface subrule in Figure 12 looks like that in Fig. 7.

Next, we construct all possible rules for a given set of local view rules used
to model the operational semantics of the distributed system. Here, the rules are
synchronized as much as possible, i.e. the largest interface subrule embeddings
are chosen for synchronization. An interface subrule embedding is one of the
largest if there no other interface subrule which contains the rule of the first

www.manaraa.com

EXWS ImRA :>
(D==) (=)

IMWS ExRA IMWS ExRA

Fig. 12. Interface subrule for Fig. 10 and 11 to construct the rule in Fig. 7

embedding as subrule. Since an interface subrule may be the empty rule, the
largest interface subrule always exists.

Definition 13 (set of synchronized rules). Let LV Rules be a set of local
view rules, then, Syn(LV Rules) is the smallest set of rules such that

— p € Syn(LV Rules) for all p € LV Rules, and

— p1 ®s p2 € Syn(LV Rules) for all py,ps € Syn(LV Rules) where s is one of
the largest interface subrule embedding of p1 and ps, i.e. there is no interface
subrule embedding s’ of p1 and po such that ps is a subrule of p,:.

A distributed system grammar w.r.t. a network type graph inrg : NTG —
DSy consists of a global start graph and a local view grammar for each local
system type in NTG, i.e. for each v in NTGy such that tyre(tq((v)) = LoSy.
For the operational semantics the set of all rules that can be constructed by the
local view rules according to Definition 13 are considered.

Definition 14 (distributed system grammar). Let inre : NTG — DiSy
be a network type graph and LS = {v € NTGy|tyra(v) = LoSy} be the set
of all local system types in NTG. A distributed system grammar w.r.t. NTG
is a pair DSG(NTG) = <Go, (LGG(v))vers) where Go is a distributed graph,
LGG(v) = P(v) is a local view grammar for each v € LS.

The operational semantics for a distributed system grammar DSG(NTG)
is given by the set of all distributed derivations starting at Gy using rules of

Syn(UvELS P(v)).

Ezrample 8. The set of synchronized rules SynRules of our case study contains
for example the synchronized rule in Figure 7 created by the synchronization of
the local view rules in Figures 11 and 10. It may also contain the corresponding
local view rules; but these are never applicable due to the distributed gluing
condition. Also the rules in Figure 9 should be in Syn Rules.

7 Conclusion

In this paper, we introduced local views on distributed graph transformation. A
local view is concerned with one local system, its import and export interfaces,
and remote import and export interfaces to which the local system may have
connections. Local systems can communicate asynchronously by simply apply-
ing local view rules sequentially, or synchronously by constructing amalgamated

www.manaraa.com

distributed rules from local view rules. The concepts of local views are presented
on graphs without attributes. We expect that they can be directly lifted to at-
tributed graphs. Moreover, application conditions for rules should be integrated
to support a convenient specification of distributed systems by distributed graph
transformation. The integration — formally as well as informally — of graph trans-
formation with attributes and application conditions has been done in [7]. We use
the amalgamated rule construction to describe the synchronization between local
view activities. In general, the resulting rules are not local view rules anymore,
but distributed rules in a global setting. For the operational semantics definition
of a distributed system all possible synchronizations of rules are computed.

References

1. A. Corradini, U. Montanari, F. Rossi, H. Ehrig, R. Heckel, and M. Lowe. Handbook
of Graph Grammars and Computing by Graph Transformations. Vol. I: Foundations,
chapter Algebraic Approaches to Graph Transformation Part [: Basic Concepts and
Double Pushout Approach. World Scientific, 1997.

2. M. Koch. Integration of Graph Transformation and Temporal Logic for the Speci-
fication of Distributed Systems. PhD thesis, Technische Universitat Berlin, FB 13,
1999. to defend.

3. Manuel Koch. Bedingte verteilte Graphtransformation und ihre Anwendung auf
verteilte Transaktionen. Technical Report 97-11, TU Berlin, 1997.

4. Manuel Koch and Gabriele Taentzer. Distributing Attributed Graph Transforma-
tions. In Proc. Workshop on “General Theory of Graph Transformation Systems”,
Bordeauz, 1997.

5. G. Taentzer. Parallel high-level replacement systems. Theoretical Computer Science,
(186), 1997.

6. G. Taentzer, I. Fischer, M. Koch, and V. Volle. Handbook of Graph Grammars
and Computing by Graph Transformations, volume III, chapter Distributed Graph
Transformation with Application to Visual Design of Distributed Systems. World
Scientific, 1998. to appear.

7. G. Taentzer, 1. Fischer, M Koch, and V. Volle. Visual design of distributed sys-
tems by graph transformation. In G. Rozenberg, U. Montanari, H. Ehrig, and
H.-J. Kreowski, editors, Handbook of Graph Grammars and Computing by Graph
Transformation, Volume 38: Concurrency and Distribution. World Scientific, 1999.
to appear.

8. Gabriele Taentzer. Parallel and Distributed Graph Transformation: Formal Descrip-
tion and Application to Communication-Based Systems. PhD thesis, TU Berlin,
1996. Shaker Verlag.

9. Karsten Victor Volle. Verteilte Konfigurationsverwaltung: COMAND. Technical
report, Basys GmbH, Am Weichselgarten 4, 91058 Erlangen, 1997.

www.manaraa.com

